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tion and Problem Des
riptionThis report do
uments part of the exam in the 
ourse DMP87 - S
heduling, Timetabling andRouting, on IMADA, SDU, spring 2008. The topi
 is 
ourse timetabling, in general and forspe
i�
 IMADA instan
es. The original assignment indi
ated that exa
t methods 
ould solvesome of the instan
es, but not all, so heuristi
 methods would be needed. This turned outnot being ne
essary for the instan
es posed, so an extra task was added. By then, we alreadyhad simulated annealing implemented, so this is also des
ribed in the report.The extra task 
hosen 
onsist of multiobje
tive analysis, 
hara
terizing the Pareto frontierof solutions, 
onsidering ea
h soft 
onstraint as an obje
tive. Furthermore, a study of howthe solution would behave if an extra room was added or removed, and a study of how thesolution would be
ome, if all mandatory 
ourses 
ould be res
heduled. Finally, a study of howmany 
ourses a student in the IMADA instan
es 
ould enroll before a valid s
hedule no longerexists.In the 
ourse timetabling problem 
onsidered, the following two kinds of 
onstraints apply:Hard 
onstraints1. Only one le
ture is assigned in a room in a timeslot.2. No assignment to a room in a timeslot if it is unavailable.3. No tea
her is tea
hing two 
ourses in the same timeslot, or in a timeslot the tea
her isunavailable.4. No student has to attend more than one le
ture in a timeslot.Soft 
onstraints1. Le
tures should not be s
heduled in the �rst or last timeslot in a day.2. Two le
tures in the same 
ourse should not be pla
ed on the same day or two 
onse
utivedays.3. Ea
h student should have at most 3 le
tures in a day.1



In the instan
es, a set of rooms are in
luded, whi
h are free to use. It is possible to s
hedulea le
ture in a rooms not in this set, using a dummy room.We have two de�nitions of a timetable:Feasible All le
tures are s
heduled in the rooms available (no dummy room used) and nohard 
onstraints are violated.Valid All le
tures are s
heduled, no hard 
onstraint are violated, but a dummy room is used.The exa
t evaluation of a s
hedule is des
ribed in the proje
t des
ription, but in summaryit is a tuple (Distan
e to feasibility , Soft 
ost), where Distan
e to feasibility isthe number of students attending the le
tures s
heduled in dummy rooms, and Soft 
ost isviolations of the soft 
onstraints.2 Solution Design2.1 Integer Programming FormulationThree versions of the integer programming formulation has been made. The �rst guaranteesan optimal s
hedule, if a feasible one exist. Room assignments must be handled afterwards.The next, whi
h also in
ludes the room assignment (and the extra 
onstraint with 
oursesonly suited for some of the rooms) Has a mu
h larger de
ision variable, but will �nd theoptimal s
hedule, even if the use of dummy rooms is ne
essary. The third is like the �rst,modi�ed slightly for the multi
riteria task. All versions use a JAVA program to do pre- andpost-pro
essing, Zimpl as modelling language and S
ip as solver, alll 
onne
ted in a Bashs
ript for easy exe
ution.De�nitions of sets and ve
torsWe de�ne the following sets and ve
tors, 
ommon for the IP formulations: E is the set ofele
tive 
ourses,M the set of mandatory 
ourses, T is the set of timeslots, R is the set ofrooms and S is the set of students. BT represents the set of timeslots lo
ated in the �rst orlast period of a day day. L[c] is a ve
tor de�ning the number of le
tures in the 
ourse c, En[c]de�nes the number of students enrolled in the 
ourse c, and Takes is a set of pairs (s, c), forwhi
h student s takes 
ourse c and TE is a set of pairs (s, c), for whi
h student s takes ele
tive
ourse c. Teaches is a set of pairs (c, t), for whi
h tea
her s tea
hes 
ourse c, and TU is aset of pairs (t, i), for whi
h tea
her t is unavailable in timeslot i. m[s],t[s],w[s],h[s] and f [s]are de
ision ve
tors telling if student s has more than 3 le
tures on any of the days Mondayto Friday. r[t] is a de
ision ve
tor telling if a dummy room is used in timeslot t, and d[c] is ade
ision ve
tor telling if the minimum distan
e of 
ourse c is violated.Version 1: Optimal if a feasible s
hedule existIn this version, the main de
ision variable x[c, t] only de
ides if 
ourse c has a le
ture intimeslot t. Ra[t] is a ve
tor de�ning the number of rooms available in timeslot t.The obje
tive is to minimize:
∑

t∈BT

∑

c∈E

x[c, t] ·En[c]+
∑

s∈S

m[s]+ t[s]+w[s]+ t[s]+f [s]+
∑

c∈E

d[c] ·En[c]+
∑

t∈T

1000 ·r[t] (2.1)2



Subje
t to the following 
onstraints:
∑

c,t∈E×T

x[c, t] = L[c] ∀c ∈ E (2.2)Whi
h ensures the number of le
tures in ea
h 
ourse is 
orre
t.
(

∑

c,t∈E×T

x[c, t]
)

− Ra[t] <= r[t] ∀t ∈ T (2.3)Whi
h ensures that if we use more rooms than we have available in a timeslot, then r[t] is setto one.
x[c1, t] + x[c2, t] ≤ 1 ∀t ∈ T,∀(teacher, c1), (teacher, c2) ∈ Teaches, c1 6= c2 (2.4)Whi
h ensures that no tea
her must tea
h two le
tures in the same timeslot.

x[c, t] = 0 ∀(teacher, t) ∈ TU,∀(teacher, c) ∈ Teaches (2.5)Whi
h ensures that no tea
her tea
hes in a timeslot, where he's unavailable.
x[c1, t] + x[c2, t] ≤ 1 ∀t ∈ T,∀(s, c1), (s, c2) ∈ TE, c1 6= c2 (2.6)Whi
h ensures that no student is s
heduled to attend two ele
tive 
ourses at the same time.

x[c1, t] = 0 ∀(c2, t) ∈ M,∀c1 ∈ E,∀(s1, c1) ∈ TE,∀(s2, c2) ∈ Takes, s1 = s2 (2.7)Whi
h ensures that no student is s
heduled to attend a mandatory and an ele
tive 
ourse inthe same timeslot.
(500 +

∑

(s,c)∈TE

∑

t∈Mon

x[c, t])/(503 − manMonday[s]) ≤ 1 + m[s] ∀s ∈ Students (2.8)Whi
h lets m[s] be 0 if a student has at most 3 le
tures on Monday in
luding mandatoryle
tures, and 1 otherwise. Su
h a 
onstraint also exist for the other four days.
∑

t∈MonTue

x[c, t] <= 1 + d[c] ∀c ∈ E (2.9)Whi
h ensures d[c] is set to 1 if there is s
heduled two le
tures in the same 
ourse on Mondayand Tuesdays. Otherwise d[c] is set to 0. Likewise, there are 
onstraints for the pair of days:Tuesday and Wednesday, Wednesday and Thursday, and Thursday and Friday.Sin
e the maximum day distan
e is 4, this 
annot be violated.3



Version 2: Optimal, even if a feasible s
hedule doesn't existIn this version, the main de
ision variable x now has a larger dimension, so x[c, t, r] is 1 if
ourse c has a le
ture s
heduled in timeslot t in room r, and 0 otherwise. This version alsohandles the extra 
onstraint, that only a subset of the rooms are valid for ea
h 
ourse. Most ofthe de�nitions from the former version also aplies here, further R represent the set of rooms,in
luding a dummy room, named dummy. w is a large penalty for using a dummy room. RUis a set of tuples (r, t), for whi
h room r is unavailable at timeslot t. CR is a list of tuples
(c, r) for whi
h 
ourse c is not allowed to be s
heduled in room r.The obje
tive fun
tion to minimize is now:

∑

t∈T

∑

c∈E

x[c, t, dummy] · En[c] · w +
∑

t∈BT

∑

c∈E

∑

r∈R

x[c, t, r] · En[c]+ (2.10)
∑

s∈S

m[s] + t[s] + w[s] + t[s] + f [s] +
∑

c∈E

d[c] · En[c]Most of the 
onstraints from the previous formulation are just extended with a sum of therooms, ex
ept (2.3), whi
h is repla
ed by the following two 
onstraints:
∑

c∈E

x[c, t, r] ≤ 1 ∀t ∈ T,∀r ∈ R (2.11)Whi
h allows at most one le
ture to be s
heduled in a room in a timeslot.
x[c, t, r] = 0 ∀(r, t) ∈ RU,∀c ∈ E (2.12)Whi
h makes sure no le
ture is s
heduled in a room that is unavailable.The �nal 
onstraint in this version handles the extra task:
x[c, t, r] = 0 ∀t ∈ T,∀(c, r) ∈ CR. (2.13)Note that this list is the inverted of the one given in the assignment.Version 3: Used for multi
riteria analysisThis version is very similar to version 1, ex
ept weight fa
tors have 
ome into pla
e on theobje
tive fun
tion, whi
h now looks like:

a1 ·
∑

t∈BT

∑

c∈E

x[c, t]·En[c]+a2 ·
∑

s∈S

m[s]+t[s]+w[s]+t[s]+f [s]+a3 ·
∑

c∈E

d[c]·En[c]+
∑

t∈T

1000·r[t](2.14)SolutionsThe optimal solutions found using the integer programming approa
h is displayed in table 2.1Trade-o� between the obje
tivesIf the tree soft 
onstraint are 
onsidered as single obje
tives, they 
an be assigned a weight,and a possible trade-o� between them 
an be examined.4



Version 1 Version 2Instan
e Cost Time (Min) Cost Time (Min)E04 (0,84) 0.02 (0,84) 0.02E05 (0, 83) 0.02 (0, 83) 0.02E06 (0, 11) 0.02 (0, 11) 0.02F05 (0, 44) 0.02 (0, 44) 0.02F06 (0,79) 0.02 (0,79) 0.02
omp-2007-2-15 (0,156) 0.39 (0,156) 3.33
omp-2007-2-16 (0,197) 3.06 (0,197) 10.08
omp-2007-2-7 (0,372) 31.19 (0,372) N/A.
omp-2007-2-8 (0,280) 3.00 (0,280) 15.37Table 1: Results using integer programming with Zimpl and S
ipLet A represent the obje
tive whi
h 
orresponds to soft 
onstraint 1, B soft 
onstraint 2and C represent 3. The obje
tive 
an then be written as:
F = a1 · A + a2 · B + a3 · C (2.15)Where the ai's are weights on ea
h of the three 
onstraints. If we let l,m, n ∈ 0, .., 7 then we
an 
al
ulate the normalized ai's as l

(l+n+m) , m
(l+n+m) and n

(l+n+m) (ex
luding l = n = m = 0).This Produ
es a number of di�erent weights, and graphing them all (for the instan
e large-
omp-2007-15), the result 
an be found in �gure 1(a). This graph is di�
ult to interpret, soinstead three experiments are performed: One of the soft 
onstraints is �xed at weight 10,and the other two must share 10. This is done for ea
h of the soft 
onstraints, and the results
an be found in �gure 1(b), 1(
) and 1(d).When we 
onsider �gure 1(b), half of the weight is used on obje
tive A, and the red andgrey line represent the two problems, where ea
h of the other two obje
tives have weight zero.From this, there does not seem to be a trade o� between the se
ond and third soft 
onstraint.When haft the weight is used on obje
tive B, �gure 1(
), there seems to be a trade-o� betweenobje
tive A and C. In �gure 1(d) half the weight goes to obje
tive C, and this leads to thesame 
on
lusion, there is a trade-o� between A and C. In summary, the minimal day distan
edoes not seem to be in trade o� with the other two soft 
onstraints, but the other two soft
onstraints are. The results are quite time 
onsuming to produ
e, so it has only been examinedon this one instan
e.2.2 Heuristi
sHere we will give a short des
ription of the heuristi
 approa
h we implemented, in 
ase theinteger programming approa
h was not able to solve the problem. We also present some �rstresults from using simulated annealing on the problem. Sin
e we in parallel with working onmeta heuristi
s solved the instan
es to optimality with integer programming, the analysis hereis not very thorough.We represent the problem as a graph 
oloring problem. We have a node in the graph forea
h le
ture and a pre
olored node for ea
h timeslot. Restri
tions are modelled by introdu
ingedges between le
ture-nodes or edges between le
tures nodes and pre
olored timeslot-nodes.5



0 200 400 600 800 1000 1200(a)Allresultsinonegraph
0 200 400 600 800 1000 1200(b)Soft
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Figure1:Fourdi�erentparallel
oordinateplots.
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We try to solve the problem by a three phase approa
h. In the �rst phase we use a 
onstru
tionheuristi
 to give a starting solution. It 
olors nodes starting with the most restri
ted to theleast restri
ted. If a node 
annot be given a valid 
olor, it is given the �rst 
olor (
olor 0).In the se
ond phase we use simulated annealing to �nd a valid solution. In the last phase weagain use simulated annealing, but this time we try to minimize the soft 
ost, while makingsure the solution is always valid. We only swit
h from phase two to phase three when a validsolution have been found. In the se
ond phase we also only perform moves that either keepthe same distan
e to feasibility or lower it.Two neighborhoods have been implemented, the 1-move neighborhood and the 2-moveneighborhood. When performing a 1-move a node the in graph is 
olored with another 
olor,
orresponding to moving a le
ture from one timeslot to another. When a 2-move is done twonodes in graph swap 
olors, 
orresponding to ex
hanging two le
tures.The annealing pro
ess is implemented by a 
onstant 
ooling fa
tor whi
h lowers the tem-perature after ea
h move. When the temperature gets low enough (0.1) the 
ooling pro
ess isrestarted by reseting the temperature. Before every restart the time is 
he
ked and if we haveused more than 5 minutes the pro
ess is stopped, and the best solution found is used. Thisgives running times between 5 and 6 minutes.Sin
e re
al
ulating the soft 
ost or number of hard 
on�i
ts every time we need to evaluatea move is very expensive, we instead store the already know soft 
ost value or the number ofhard 
on�i
ts and update this. A further improvement 
ould be implemented by also doingthis for the distan
e to feasibility.The results seen in table 2.2 have all been 
al
ulated with seed 1.Instan
e 1-move 1 and 2-move OptimalE04 86 95 84E05 83 107 83E06 15 27 11F05 167 68 44F06 79 82 79
omp-2007-2-15 180 424 156
omp-2007-2-16 241 587 197
omp-2007-2-7 420 676 372
omp-2007-2-8 333 615 280Table 2: Results from simulated annealingFor all instan
es ex
ept F05 the 1-move version performs far better than the 1 and 2-moveversion. The 1-move version does not perform well on the instan
e F05, be
ause it is notpossible to perform any 1-moves (all timeslot are used by a le
ture). For two of the IMADA-instan
es the 1-move version �nds the optimal solution. These �rst results suggest that oneshould use the 1-move version, and only if the results there seem bad the 2-move versionshould be tried.For the small IMADA-instan
es then solutions found with the 1-move version are 
lose tothe optimal ones (when ignoring F05). For the large instan
es the results from using simulatedannealing are signi�
antly worse that the optimal ones. These results point in the dire
tionthat using simulated annealing on large timetabeling problems is not a good idea, however a7



more 
omplete test should be done.3 Extensions3.1 Minimum number of roomsHere we 
onsider the basi
 problem and try to �nd the minimum number of rooms for whi
hthere still exits a feasible solution. For ea
h instan
e we have lowered the number of availablerooms by one ea
h step, and the soft 
ost results are shown in the tables below. For ea
h testrun, the 
ontribution from ea
h of the three soft 
osts are shown. We 
ontinued to de
reasethe number of rooms until a feasible s
hedule no longer existed.In table 3.1 the results for the large instan
e 
omp-2007-2-15 
an be seen. When loweringthe available rooms from 10 to 9 or 8 there is no 
hange in the quality of the solution. Whenthere are only 7 or 6 rooms available there is a small in
rease in the soft 
ost 
ontributionfrom students having to many le
tures in one day. For 5 and 4 rooms there is a large in
reasein the 
ontribution from le
tures in the �rst and last time slot, and a small de
rease in thenumber of students with four or more le
tures in a day. For 3 rooms it is not possible to �nda feasible solution. In table 3.1 similar results 
an be seen for the instan
e 
omp-2007-2-8.The results seem intuitive, sin
e when the number of rooms de
rease some le
tures 
an nolonger be done in parallel and must be moved to another time slot. If the le
ture is movedto the �rst or last time slot of a day, the soft 
ost in
rease is the number of students in the
ourse. If it is possible to �nd a time slot that is not the �rst or last of a day, the soft 
ostin
rease might just be a few students who now have four le
tures or more on that day.Rooms Cost First and last Num. of Le
tures Separation9 (0, 156) 116 40 08 (0, 156) 116 40 07 (0, 157) 116 41 06 (0, 159) 116 43 05 (0, 188) 152 36 04 (0, 324) 288 36 03 (230, 352) 316 36 0Table 3: 
omp-2007-2-15: Soft 
ost results for �nding the minimum number of rooms3.2 An extra roomWe have also 
onsidered in
reasing the number of rooms by one, to see if this gives a bettersolution. For all the large instan
es the is no gain from using 11 or 21 rooms instead of 10 or20. The solution have exa
tly the same quality. From the tests in se
tion 3.1 this is expe
tedsin
e the same quality solution 
ould be found with fewer rooms.For all the IMADA-instan
es a better solution is found by in
reasing the number of roomsto two. For all instan
es the soft 
ost 
ontribution from le
tures in the �rst or last timeslotof a day is lowered. The soft 
ost 
ontribution from four or more le
tures in a day staysalmost the same. For the two spring s
hedules there is a 
hange in the 
ost 
ontribution from8



Rooms Cost First and last Num. of Le
tures Separation19 (0, 280) 249 31 018 (0, 280) 249 31 0. . . . . . . . . . . . . . .7 (0, 280) 249 31 06 (0, 307) 275 32 05 (0, 435) 412 23 04 (18, 620) 591 29 0Table 4: 
omp-2007-2-8: Soft 
ost results for �nding the minimum number of roomsOriginal Extra roomInstan
e Soft 
ost Composition Soft 
ost CompositionE04 84 (78,6,0) 21 (19,2,0)E05 83 (59,24,0) 66 (42,24,0)E06 11 (11,0,0) 0 (0,0,0)F05 44 (42,2,0) 32 (17,2,13)F06 79 (46,8,25) 43 (17,9,17)Table 5: Comparison of soft 
ost for original IMADA-instan
es with soft 
ost for an extraroomseparation of le
tures. The largest improvements 
learly 
ome from redu
ing the 
ontributionfrom early or late le
tures.The fa
t that the improvement 
omes from early or late le
tures is not suprising. TheIMADA-s
hedules, with one room, all make heavy use of the �rst or last timeslot. Addinga room gives possibilities to res
hedule these le
tures to the middle timeslots. Res
hedulinga le
ture redu
es the soft 
ost for all students in the 
ourse. For the two other soft 
ost
ontributions the gains are either smaller or more di�
ult to get. Res
heduling a le
turemight redu
e the number of le
tures in a day to less than four, but most often only for a fewstudents. Res
heduling a le
ture so that there are two days between the le
tures in a 
ourse isdi�
ult, sin
e two or three days 
annot be used due to the already s
heduled le
ture in that
ourse.3.3 Res
heduling mandatory 
oursesIf we are allowed to res
hedule mandatory 
ourses as well as ele
tive 
ourses, the new optimalsolution will obviously be no worse than the optimal solution when we are only allowed tos
hedule ele
tive 
ourses.When we tried to solve this new problem with integer programming, we were only able tosolve the the IMADA-instan
e E04. All other instan
es took too long. The soft 
ost for thesolved IMADA-instan
e was 0. 9



3.4 How many 
ourses 
an a student take?The thing we 
onsider is, if it is possible to give a guideline to students on how many mandatoryand ele
tive 
ourses they 
an take, while it is still very likely that we 
an �nd a valid s
hedule.To investigate this problem we randomly generated students with four 
ourse enrollments.We ran �ve di�erent tests, one for ea
h of the following 
ombinations of mandatory andele
tive 
ourses: (4,0), (3,1), (2,2), (1,3) and (0,4). The �rst situation (when a studenttakes four mandatory 
ourses and zero ele
tive) is trivial sin
e we do not have to s
heduleanything. The number of randomly genrerated students was 
hosen so that the total numberof 
ourse enrollments mat
hed the number of enrollments in the instan
e. Meaning that whenrunning a test on IMADA-instan
e F05 we had about 195
4 students, so that the total numberof enrollments mat
hed the 195 from the original instan
e.We ran the tests on the two instan
es F05 and E04. Ea
h test was run 10 times and theresults 
an be seen in table 3.4 and 3.4.Mandatory-Ele
tive Num. not valid Num. feasible Avg. quality4-0 0 10 (0,0)3-1 1 0 (13.2,74.8)2-2 6 0 (29.0,140.8)1-3 2 0 (31.3,142.6)0-4 0 10 (0,122.6)Table 6: S
hedule quality for randomized students (instan
e F05)Mandatory-Ele
tive Num. not valid Num. feasible Avg. quality4-0 0 10 (0,0)3-1 0 7 (2.6,41.6)2-2 2 1 (31.9,83.5)1-3 0 8 (5.8,140.5)0-4 0 10 (0,18.6)Table 7: S
hedule quality for randomized students (instan
e E04)From the results we see that the most di�
ult situation is when the students take twomandatory and two ele
tive 
ourses. Besides from this situation it seems that a valid s
hedule
an quite often be found.When also 
onsidering that in the tested situations students takes 
ompletely random
ourses, in 
ontrary to the situation at IMADA where students only take some 
ombinationsof mandatory 
ourses (the ones de�ned in their re
ommended study plan) and for a large partonly one type of ele
tive 
ourses (
omputer s
ien
e 
ourses or math 
ourses). This arti�
ialsituation of 
ompletely random 
ourse enrollments ,we believe, is a lot more di�
ult, than reallife data would be. We 
onsider it therefor likely that a valid s
hedule exists when 
onsideringstudents who takes no more than four 
ourses. For more than two mandatory and two ele
tive
ourses, we only seldomly found valid s
hedules.10


