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Contents1 Introdution and Problem Desription 12 Solution Design 22.1 Integer Programming Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 Heuristis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Extensions 83.1 Minimum number of rooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2 An extra room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.3 Resheduling mandatory ourses . . . . . . . . . . . . . . . . . . . . . . . . . . 93.4 How many ourses an a student take? . . . . . . . . . . . . . . . . . . . . . . . 101 Introdution and Problem DesriptionThis report douments part of the exam in the ourse DMP87 - Sheduling, Timetabling andRouting, on IMADA, SDU, spring 2008. The topi is ourse timetabling, in general and forspei� IMADA instanes. The original assignment indiated that exat methods ould solvesome of the instanes, but not all, so heuristi methods would be needed. This turned outnot being neessary for the instanes posed, so an extra task was added. By then, we alreadyhad simulated annealing implemented, so this is also desribed in the report.The extra task hosen onsist of multiobjetive analysis, haraterizing the Pareto frontierof solutions, onsidering eah soft onstraint as an objetive. Furthermore, a study of howthe solution would behave if an extra room was added or removed, and a study of how thesolution would beome, if all mandatory ourses ould be resheduled. Finally, a study of howmany ourses a student in the IMADA instanes ould enroll before a valid shedule no longerexists.In the ourse timetabling problem onsidered, the following two kinds of onstraints apply:Hard onstraints1. Only one leture is assigned in a room in a timeslot.2. No assignment to a room in a timeslot if it is unavailable.3. No teaher is teahing two ourses in the same timeslot, or in a timeslot the teaher isunavailable.4. No student has to attend more than one leture in a timeslot.Soft onstraints1. Letures should not be sheduled in the �rst or last timeslot in a day.2. Two letures in the same ourse should not be plaed on the same day or two onseutivedays.3. Eah student should have at most 3 letures in a day.1



In the instanes, a set of rooms are inluded, whih are free to use. It is possible to shedulea leture in a rooms not in this set, using a dummy room.We have two de�nitions of a timetable:Feasible All letures are sheduled in the rooms available (no dummy room used) and nohard onstraints are violated.Valid All letures are sheduled, no hard onstraint are violated, but a dummy room is used.The exat evaluation of a shedule is desribed in the projet desription, but in summaryit is a tuple (Distane to feasibility , Soft ost), where Distane to feasibility isthe number of students attending the letures sheduled in dummy rooms, and Soft ost isviolations of the soft onstraints.2 Solution Design2.1 Integer Programming FormulationThree versions of the integer programming formulation has been made. The �rst guaranteesan optimal shedule, if a feasible one exist. Room assignments must be handled afterwards.The next, whih also inludes the room assignment (and the extra onstraint with oursesonly suited for some of the rooms) Has a muh larger deision variable, but will �nd theoptimal shedule, even if the use of dummy rooms is neessary. The third is like the �rst,modi�ed slightly for the multiriteria task. All versions use a JAVA program to do pre- andpost-proessing, Zimpl as modelling language and Sip as solver, alll onneted in a Bashsript for easy exeution.De�nitions of sets and vetorsWe de�ne the following sets and vetors, ommon for the IP formulations: E is the set ofeletive ourses,M the set of mandatory ourses, T is the set of timeslots, R is the set ofrooms and S is the set of students. BT represents the set of timeslots loated in the �rst orlast period of a day day. L[c] is a vetor de�ning the number of letures in the ourse c, En[c]de�nes the number of students enrolled in the ourse c, and Takes is a set of pairs (s, c), forwhih student s takes ourse c and TE is a set of pairs (s, c), for whih student s takes eletiveourse c. Teaches is a set of pairs (c, t), for whih teaher s teahes ourse c, and TU is aset of pairs (t, i), for whih teaher t is unavailable in timeslot i. m[s],t[s],w[s],h[s] and f [s]are deision vetors telling if student s has more than 3 letures on any of the days Mondayto Friday. r[t] is a deision vetor telling if a dummy room is used in timeslot t, and d[c] is adeision vetor telling if the minimum distane of ourse c is violated.Version 1: Optimal if a feasible shedule existIn this version, the main deision variable x[c, t] only deides if ourse c has a leture intimeslot t. Ra[t] is a vetor de�ning the number of rooms available in timeslot t.The objetive is to minimize:
∑

t∈BT

∑

c∈E

x[c, t] ·En[c]+
∑

s∈S

m[s]+ t[s]+w[s]+ t[s]+f [s]+
∑

c∈E

d[c] ·En[c]+
∑

t∈T

1000 ·r[t] (2.1)2



Subjet to the following onstraints:
∑

c,t∈E×T

x[c, t] = L[c] ∀c ∈ E (2.2)Whih ensures the number of letures in eah ourse is orret.
(

∑

c,t∈E×T

x[c, t]
)

− Ra[t] <= r[t] ∀t ∈ T (2.3)Whih ensures that if we use more rooms than we have available in a timeslot, then r[t] is setto one.
x[c1, t] + x[c2, t] ≤ 1 ∀t ∈ T,∀(teacher, c1), (teacher, c2) ∈ Teaches, c1 6= c2 (2.4)Whih ensures that no teaher must teah two letures in the same timeslot.

x[c, t] = 0 ∀(teacher, t) ∈ TU,∀(teacher, c) ∈ Teaches (2.5)Whih ensures that no teaher teahes in a timeslot, where he's unavailable.
x[c1, t] + x[c2, t] ≤ 1 ∀t ∈ T,∀(s, c1), (s, c2) ∈ TE, c1 6= c2 (2.6)Whih ensures that no student is sheduled to attend two eletive ourses at the same time.

x[c1, t] = 0 ∀(c2, t) ∈ M,∀c1 ∈ E,∀(s1, c1) ∈ TE,∀(s2, c2) ∈ Takes, s1 = s2 (2.7)Whih ensures that no student is sheduled to attend a mandatory and an eletive ourse inthe same timeslot.
(500 +

∑

(s,c)∈TE

∑

t∈Mon

x[c, t])/(503 − manMonday[s]) ≤ 1 + m[s] ∀s ∈ Students (2.8)Whih lets m[s] be 0 if a student has at most 3 letures on Monday inluding mandatoryletures, and 1 otherwise. Suh a onstraint also exist for the other four days.
∑

t∈MonTue

x[c, t] <= 1 + d[c] ∀c ∈ E (2.9)Whih ensures d[c] is set to 1 if there is sheduled two letures in the same ourse on Mondayand Tuesdays. Otherwise d[c] is set to 0. Likewise, there are onstraints for the pair of days:Tuesday and Wednesday, Wednesday and Thursday, and Thursday and Friday.Sine the maximum day distane is 4, this annot be violated.3



Version 2: Optimal, even if a feasible shedule doesn't existIn this version, the main deision variable x now has a larger dimension, so x[c, t, r] is 1 ifourse c has a leture sheduled in timeslot t in room r, and 0 otherwise. This version alsohandles the extra onstraint, that only a subset of the rooms are valid for eah ourse. Most ofthe de�nitions from the former version also aplies here, further R represent the set of rooms,inluding a dummy room, named dummy. w is a large penalty for using a dummy room. RUis a set of tuples (r, t), for whih room r is unavailable at timeslot t. CR is a list of tuples
(c, r) for whih ourse c is not allowed to be sheduled in room r.The objetive funtion to minimize is now:

∑

t∈T

∑

c∈E

x[c, t, dummy] · En[c] · w +
∑

t∈BT

∑

c∈E

∑

r∈R

x[c, t, r] · En[c]+ (2.10)
∑

s∈S

m[s] + t[s] + w[s] + t[s] + f [s] +
∑

c∈E

d[c] · En[c]Most of the onstraints from the previous formulation are just extended with a sum of therooms, exept (2.3), whih is replaed by the following two onstraints:
∑

c∈E

x[c, t, r] ≤ 1 ∀t ∈ T,∀r ∈ R (2.11)Whih allows at most one leture to be sheduled in a room in a timeslot.
x[c, t, r] = 0 ∀(r, t) ∈ RU,∀c ∈ E (2.12)Whih makes sure no leture is sheduled in a room that is unavailable.The �nal onstraint in this version handles the extra task:
x[c, t, r] = 0 ∀t ∈ T,∀(c, r) ∈ CR. (2.13)Note that this list is the inverted of the one given in the assignment.Version 3: Used for multiriteria analysisThis version is very similar to version 1, exept weight fators have ome into plae on theobjetive funtion, whih now looks like:

a1 ·
∑

t∈BT

∑

c∈E

x[c, t]·En[c]+a2 ·
∑

s∈S

m[s]+t[s]+w[s]+t[s]+f [s]+a3 ·
∑

c∈E

d[c]·En[c]+
∑

t∈T

1000·r[t](2.14)SolutionsThe optimal solutions found using the integer programming approah is displayed in table 2.1Trade-o� between the objetivesIf the tree soft onstraint are onsidered as single objetives, they an be assigned a weight,and a possible trade-o� between them an be examined.4



Version 1 Version 2Instane Cost Time (Min) Cost Time (Min)E04 (0,84) 0.02 (0,84) 0.02E05 (0, 83) 0.02 (0, 83) 0.02E06 (0, 11) 0.02 (0, 11) 0.02F05 (0, 44) 0.02 (0, 44) 0.02F06 (0,79) 0.02 (0,79) 0.02omp-2007-2-15 (0,156) 0.39 (0,156) 3.33omp-2007-2-16 (0,197) 3.06 (0,197) 10.08omp-2007-2-7 (0,372) 31.19 (0,372) N/A.omp-2007-2-8 (0,280) 3.00 (0,280) 15.37Table 1: Results using integer programming with Zimpl and SipLet A represent the objetive whih orresponds to soft onstraint 1, B soft onstraint 2and C represent 3. The objetive an then be written as:
F = a1 · A + a2 · B + a3 · C (2.15)Where the ai's are weights on eah of the three onstraints. If we let l,m, n ∈ 0, .., 7 then wean alulate the normalized ai's as l

(l+n+m) , m
(l+n+m) and n

(l+n+m) (exluding l = n = m = 0).This Produes a number of di�erent weights, and graphing them all (for the instane large-omp-2007-15), the result an be found in �gure 1(a). This graph is di�ult to interpret, soinstead three experiments are performed: One of the soft onstraints is �xed at weight 10,and the other two must share 10. This is done for eah of the soft onstraints, and the resultsan be found in �gure 1(b), 1() and 1(d).When we onsider �gure 1(b), half of the weight is used on objetive A, and the red andgrey line represent the two problems, where eah of the other two objetives have weight zero.From this, there does not seem to be a trade o� between the seond and third soft onstraint.When haft the weight is used on objetive B, �gure 1(), there seems to be a trade-o� betweenobjetive A and C. In �gure 1(d) half the weight goes to objetive C, and this leads to thesame onlusion, there is a trade-o� between A and C. In summary, the minimal day distanedoes not seem to be in trade o� with the other two soft onstraints, but the other two softonstraints are. The results are quite time onsuming to produe, so it has only been examinedon this one instane.2.2 HeuristisHere we will give a short desription of the heuristi approah we implemented, in ase theinteger programming approah was not able to solve the problem. We also present some �rstresults from using simulated annealing on the problem. Sine we in parallel with working onmeta heuristis solved the instanes to optimality with integer programming, the analysis hereis not very thorough.We represent the problem as a graph oloring problem. We have a node in the graph foreah leture and a preolored node for eah timeslot. Restritions are modelled by introduingedges between leture-nodes or edges between letures nodes and preolored timeslot-nodes.5



0 200 400 600 800 1000 1200(a)Allresultsinonegraph
0 200 400 600 800 1000 1200(b)Softost1(A)�xed

0 200 400 600 800 1000 1200()Softost2(B)�xed

0 200 400 600 800 1000 1200(d)Softost1(C)�xed
Figure1:Fourdi�erentparalleloordinateplots.
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We try to solve the problem by a three phase approah. In the �rst phase we use a onstrutionheuristi to give a starting solution. It olors nodes starting with the most restrited to theleast restrited. If a node annot be given a valid olor, it is given the �rst olor (olor 0).In the seond phase we use simulated annealing to �nd a valid solution. In the last phase weagain use simulated annealing, but this time we try to minimize the soft ost, while makingsure the solution is always valid. We only swith from phase two to phase three when a validsolution have been found. In the seond phase we also only perform moves that either keepthe same distane to feasibility or lower it.Two neighborhoods have been implemented, the 1-move neighborhood and the 2-moveneighborhood. When performing a 1-move a node the in graph is olored with another olor,orresponding to moving a leture from one timeslot to another. When a 2-move is done twonodes in graph swap olors, orresponding to exhanging two letures.The annealing proess is implemented by a onstant ooling fator whih lowers the tem-perature after eah move. When the temperature gets low enough (0.1) the ooling proess isrestarted by reseting the temperature. Before every restart the time is heked and if we haveused more than 5 minutes the proess is stopped, and the best solution found is used. Thisgives running times between 5 and 6 minutes.Sine realulating the soft ost or number of hard on�its every time we need to evaluatea move is very expensive, we instead store the already know soft ost value or the number ofhard on�its and update this. A further improvement ould be implemented by also doingthis for the distane to feasibility.The results seen in table 2.2 have all been alulated with seed 1.Instane 1-move 1 and 2-move OptimalE04 86 95 84E05 83 107 83E06 15 27 11F05 167 68 44F06 79 82 79omp-2007-2-15 180 424 156omp-2007-2-16 241 587 197omp-2007-2-7 420 676 372omp-2007-2-8 333 615 280Table 2: Results from simulated annealingFor all instanes exept F05 the 1-move version performs far better than the 1 and 2-moveversion. The 1-move version does not perform well on the instane F05, beause it is notpossible to perform any 1-moves (all timeslot are used by a leture). For two of the IMADA-instanes the 1-move version �nds the optimal solution. These �rst results suggest that oneshould use the 1-move version, and only if the results there seem bad the 2-move versionshould be tried.For the small IMADA-instanes then solutions found with the 1-move version are lose tothe optimal ones (when ignoring F05). For the large instanes the results from using simulatedannealing are signi�antly worse that the optimal ones. These results point in the diretionthat using simulated annealing on large timetabeling problems is not a good idea, however a7



more omplete test should be done.3 Extensions3.1 Minimum number of roomsHere we onsider the basi problem and try to �nd the minimum number of rooms for whihthere still exits a feasible solution. For eah instane we have lowered the number of availablerooms by one eah step, and the soft ost results are shown in the tables below. For eah testrun, the ontribution from eah of the three soft osts are shown. We ontinued to dereasethe number of rooms until a feasible shedule no longer existed.In table 3.1 the results for the large instane omp-2007-2-15 an be seen. When loweringthe available rooms from 10 to 9 or 8 there is no hange in the quality of the solution. Whenthere are only 7 or 6 rooms available there is a small inrease in the soft ost ontributionfrom students having to many letures in one day. For 5 and 4 rooms there is a large inreasein the ontribution from letures in the �rst and last time slot, and a small derease in thenumber of students with four or more letures in a day. For 3 rooms it is not possible to �nda feasible solution. In table 3.1 similar results an be seen for the instane omp-2007-2-8.The results seem intuitive, sine when the number of rooms derease some letures an nolonger be done in parallel and must be moved to another time slot. If the leture is movedto the �rst or last time slot of a day, the soft ost inrease is the number of students in theourse. If it is possible to �nd a time slot that is not the �rst or last of a day, the soft ostinrease might just be a few students who now have four letures or more on that day.Rooms Cost First and last Num. of Letures Separation9 (0, 156) 116 40 08 (0, 156) 116 40 07 (0, 157) 116 41 06 (0, 159) 116 43 05 (0, 188) 152 36 04 (0, 324) 288 36 03 (230, 352) 316 36 0Table 3: omp-2007-2-15: Soft ost results for �nding the minimum number of rooms3.2 An extra roomWe have also onsidered inreasing the number of rooms by one, to see if this gives a bettersolution. For all the large instanes the is no gain from using 11 or 21 rooms instead of 10 or20. The solution have exatly the same quality. From the tests in setion 3.1 this is expetedsine the same quality solution ould be found with fewer rooms.For all the IMADA-instanes a better solution is found by inreasing the number of roomsto two. For all instanes the soft ost ontribution from letures in the �rst or last timeslotof a day is lowered. The soft ost ontribution from four or more letures in a day staysalmost the same. For the two spring shedules there is a hange in the ost ontribution from8



Rooms Cost First and last Num. of Letures Separation19 (0, 280) 249 31 018 (0, 280) 249 31 0. . . . . . . . . . . . . . .7 (0, 280) 249 31 06 (0, 307) 275 32 05 (0, 435) 412 23 04 (18, 620) 591 29 0Table 4: omp-2007-2-8: Soft ost results for �nding the minimum number of roomsOriginal Extra roomInstane Soft ost Composition Soft ost CompositionE04 84 (78,6,0) 21 (19,2,0)E05 83 (59,24,0) 66 (42,24,0)E06 11 (11,0,0) 0 (0,0,0)F05 44 (42,2,0) 32 (17,2,13)F06 79 (46,8,25) 43 (17,9,17)Table 5: Comparison of soft ost for original IMADA-instanes with soft ost for an extraroomseparation of letures. The largest improvements learly ome from reduing the ontributionfrom early or late letures.The fat that the improvement omes from early or late letures is not suprising. TheIMADA-shedules, with one room, all make heavy use of the �rst or last timeslot. Addinga room gives possibilities to reshedule these letures to the middle timeslots. Reshedulinga leture redues the soft ost for all students in the ourse. For the two other soft ostontributions the gains are either smaller or more di�ult to get. Resheduling a leturemight redue the number of letures in a day to less than four, but most often only for a fewstudents. Resheduling a leture so that there are two days between the letures in a ourse isdi�ult, sine two or three days annot be used due to the already sheduled leture in thatourse.3.3 Resheduling mandatory oursesIf we are allowed to reshedule mandatory ourses as well as eletive ourses, the new optimalsolution will obviously be no worse than the optimal solution when we are only allowed toshedule eletive ourses.When we tried to solve this new problem with integer programming, we were only able tosolve the the IMADA-instane E04. All other instanes took too long. The soft ost for thesolved IMADA-instane was 0. 9



3.4 How many ourses an a student take?The thing we onsider is, if it is possible to give a guideline to students on how many mandatoryand eletive ourses they an take, while it is still very likely that we an �nd a valid shedule.To investigate this problem we randomly generated students with four ourse enrollments.We ran �ve di�erent tests, one for eah of the following ombinations of mandatory andeletive ourses: (4,0), (3,1), (2,2), (1,3) and (0,4). The �rst situation (when a studenttakes four mandatory ourses and zero eletive) is trivial sine we do not have to sheduleanything. The number of randomly genrerated students was hosen so that the total numberof ourse enrollments mathed the number of enrollments in the instane. Meaning that whenrunning a test on IMADA-instane F05 we had about 195
4 students, so that the total numberof enrollments mathed the 195 from the original instane.We ran the tests on the two instanes F05 and E04. Eah test was run 10 times and theresults an be seen in table 3.4 and 3.4.Mandatory-Eletive Num. not valid Num. feasible Avg. quality4-0 0 10 (0,0)3-1 1 0 (13.2,74.8)2-2 6 0 (29.0,140.8)1-3 2 0 (31.3,142.6)0-4 0 10 (0,122.6)Table 6: Shedule quality for randomized students (instane F05)Mandatory-Eletive Num. not valid Num. feasible Avg. quality4-0 0 10 (0,0)3-1 0 7 (2.6,41.6)2-2 2 1 (31.9,83.5)1-3 0 8 (5.8,140.5)0-4 0 10 (0,18.6)Table 7: Shedule quality for randomized students (instane E04)From the results we see that the most di�ult situation is when the students take twomandatory and two eletive ourses. Besides from this situation it seems that a valid shedulean quite often be found.When also onsidering that in the tested situations students takes ompletely randomourses, in ontrary to the situation at IMADA where students only take some ombinationsof mandatory ourses (the ones de�ned in their reommended study plan) and for a large partonly one type of eletive ourses (omputer siene ourses or math ourses). This arti�ialsituation of ompletely random ourse enrollments ,we believe, is a lot more di�ult, than reallife data would be. We onsider it therefor likely that a valid shedule exists when onsideringstudents who takes no more than four ourses. For more than two mandatory and two eletiveourses, we only seldomly found valid shedules.10


